Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

High-Resolution Chest Computed Tomography Imaging of the Lungs: Impact of 1024 Matrix Reconstruction and Photon-Counting Detector Computed Tomography.

OBJECTIVES: The aim of this study was to evaluate if a high-resolution photon-counting detector computed tomography (PCD-CT) system with a 1024×1024 matrix reconstruction can improve the visualization of fine structures in the lungs compared with conventional high-resolution CT (HRCT).

MATERIALS AND METHODS: Twenty-two adult patients referred for clinical chest HRCT (mean CTDI vol, 13.58 mGy) underwent additional dose-matched PCD-CT (mean volume CT dose index, 13.37 mGy) after written informed consent. Computed tomography images were reconstructed at a slice thickness of 1.5 mm and an image increment of 1 mm with our routine HRCT reconstruction kernels (B46 and Bv49) at 512 and 1024 matrix sizes for conventional energy-integrating detector (EID) CT scans. For PCD-CT, routine B46 kernel and an additional sharp kernel (Q65, unavailable for EID) images were reconstructed at 1024 matrix size. Two thoracic radiologists compared images from EID and PCD-CT noting the highest level bronchus clearly identified in each lobe of the right lung, and rating bronchial wall conspicuity of third- and fourth-order bronchi. Lung nodules were also compared with the B46/EID/512 images using a 5-point Likert scale. Statistical analysis was performed using a Wilcoxon signed rank test with a P < 0.05 considered significant.

RESULTS: Compared with B46/EID/512, readers detected higher-order bronchi using B46/PCD/1024 and Q65/PCD/1024 images for every lung lobe (P < 0.0015), but in only the right middle lobe for B46/EID/1024 (P = 0.007). Readers were able to better identify bronchial walls of the third- and fourth-order bronchi better using the Q65/PCD/1024 images (mean Likert scores of 1.1 and 1.5), which was significantly higher compared with B46/EID/1024 or B46/PCD/1024 images (mean difference, 0.8; P < 0.0001). The Q65/PCD/1024 images had a mean nodule score of 1 ± 1.3 for reader 1, and -0.1 (0.9) for reader 2, with one reader having improved nodule evaluation scores for both PCD kernels (P < 0.001), and the other reader not identifying any increased advantage over B46/EID/1024 (P = 1.0).

CONCLUSIONS: High-resolution lung PCD-CT with 1024 image matrix reconstruction increased radiologists' ability to visualize higher-order bronchi and bronchial walls without compromising nodule evaluation compared with current chest CT, creating an opportunity for radiologists to better evaluate airway pathology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app