Add like
Add dislike
Add to saved papers

In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats.

Adipose tissue is the primary site of storage for excess energy as triglyceride and it helps in synthesizing a number of biologically active compounds that regulate metabolic homeostasis. Consumption of high dietary fat increases stored fat mass and is considered as a main risk factor for metabolic diseases. Beta-sitosterol (β-sitosterol) is a plant sterol. It has the similar chemical structure like cholesterol. Clinical and experimental studies have shown that β-sitosterol has anti-diabetic, hypolipidemic, anti-cancer, anti-arthritic, and hepatoprotective role. However, effect of β-sitosterol on insulin signaling molecules and glucose oxidation has not been explored. Hence in the present study we aimed to discover the protective role of β-sitosterol on the expression of insulin signaling molecules in the adipose tissue of high-fat diet and sucrose-induced type-2 diabetic experimental rats. Effect dose of β-sitosterol (20 mg/kg b.wt, orally for 30 days) was given to high fat diet and sucrose-induced type-2 diabetic rats to study its anti-diabetic activity. Results of the study showed that the treatment with β-sitosterol to diabetes-induced rats normalized the altered levels of blood glucose, serum insulin and testosterone, lipid profile, oxidative stress markers, antioxidant enzymes, insulin receptor (IR), and glucose transporter 4 (GLUT4) proteins. Our present findings indicate that β-sitosterol improves glycemic control through activation of IR and GLUT4 in the adipose tissue of high fat and sucrose-induced type-2 diabetic rats. Insilico analysis also coincides with invivo results. Hence it is very clear that β-sitosterol can act as potent antidiabetic agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app