COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Tissue-based markers of right ventricular dysfunction in ischemic mitral regurgitation assessed via stress cardiac magnetic resonance and three-dimensional echocardiography.

Ischemic mitral regurgitation (iMR) augments risk for right ventricular dysfunction (RVDYS ). Right and left ventricular (LV) function are linked via common coronary perfusion, but data is lacking regarding impact of LV ischemia and infarct transmurality-as well as altered preload and afterload-on RV performance. In this prospective multimodality imaging study, stress CMR and 3-dimensional echo (3D-echo) were performed concomitantly in patients with iMR. CMR provided a reference for RVDYS (RVEF < 50%), as well as LV function/remodeling, ischemia and infarction. Echo was used to test multiple RV performance indices, including linear (TAPSE, S'), strain (GLS), and volumetric (3D-echo) approaches. 90 iMR patients were studied; 32% had RVDYS . RVDYS patients had greater iMR, lower LVEF, larger global ischemic burden and inferior infarct size (all p < 0.05). Regarding injury pattern, RVDYS was associated with LV inferior ischemia and infarction (both p < 0.05); 80% of affected patients had substantial viable myocardium (< 50% infarct thickness) in ischemic inferior segments. Regarding RV function, CMR RVEF similarly correlated with 3D-echo and GLS (r = 0.81-0.87): GLS yielded high overall performance for CMR-evidenced RVDYS (AUC: 0.94), nearly equivalent to that of 3D-echo (AUC: 0.95). In multivariable regression, GLS was independently associated with RV volumetric dilation on CMR (OR - 0.90 [CI - 1.19 to - 0.61], p < 0.001) and 3D echo (OR - 0.43 [CI - 0.84 to - 0.02], p = 0.04). Among patients with iMR, RVDYS is associated with potentially reversible processes, including LV inferior ischemic but predominantly viable myocardium and strongly impacted by volumetric loading conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app