Add like
Add dislike
Add to saved papers

Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI.

Abdominal Radiology 2018 November 21
PURPOSE: The purpose of the study was to propose a deep transfer learning (DTL)-based model to distinguish indolent from clinically significant prostate cancer (PCa) lesions and to compare the DTL-based model with a deep learning (DL) model without transfer learning and PIRADS v2 score on 3 Tesla multi-parametric MRI (3T mp-MRI) with whole-mount histopathology (WMHP) validation.

METHODS: With IRB approval, 140 patients with 3T mp-MRI and WMHP comprised the study cohort. The DTL-based model was trained on 169 lesions in 110 arbitrarily selected patients and tested on the remaining 47 lesions in 30 patients. We compared the DTL-based model with the same DL model architecture trained from scratch and the classification based on PIRADS v2 score with a threshold of 4 using accuracy, sensitivity, specificity, and area under curve (AUC). Bootstrapping with 2000 resamples was performed to estimate the 95% confidence interval (CI) for AUC.

RESULTS: After training on 169 lesions in 110 patients, the AUC of discriminating indolent from clinically significant PCa lesions of the DTL-based model, DL model without transfer learning and PIRADS v2 score ≥ 4 were 0.726 (CI [0.575, 0.876]), 0.687 (CI [0.532, 0.843]), and 0.711 (CI [0.575, 0.847]), respectively, in the testing set. The DTL-based model achieved higher AUC compared to the DL model without transfer learning and PIRADS v2 score ≥ 4 in discriminating clinically significant lesions in the testing set.

CONCLUSION: The DeLong test indicated that the DTL-based model achieved comparable AUC compared to the classification based on PIRADS v2 score (p = 0.89).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app