Add like
Add dislike
Add to saved papers

Microbiome dynamics of two differentially resilient corals.

Coral bleaching and disease are 2 common occurrences that are contributing to global coral cover decline. Understanding the interactions between the coral animal and its microbial associates, and how they may change in the presence of stressors such as warming and acidification, is a crucial component to understanding both susceptibility and resistance to disease and bleaching. The coral Diploria labyrinthiformis has been shown to be more disease resistant than its relative Pseudodiploria strigosa, providing an ideal study system for disease resistance. In this study, we examined the bacterial communities of these 2 coral species on the Florida Reef tract every 6 mo for 18 mo (in situ sampling), and under experimental (laboratory) thermal and pH manipulation. The in situ sampling encompassed wide fluctuations in temperature, including an anomalously warm summer period. The laboratory experiments involved exposure to both increased temperature (31°C) and lowered pH (7.7). The in situ bacterial communities of both coral species were highly similar in the winter, but diverged during summer, with the D. labyrinthiformis bacterial community being more stable than that of P. strigosa. Differences in the bacterial community between the 2 coral species included 29 operational taxonomic units (OTUs) that were specific to D. labyrinthiformis in all seasons, while only 2 OTUs were specific to P. strigosa. The comparative stability of the D. labyrinthiformis microbiome, in addition to harboring a more specific microbiome, may be a key component of the relative disease resistance of this coral.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app