Add like
Add dislike
Add to saved papers

Disposable silicon-glass microfluidic devices: precise, robust and cheap.

Lab on a Chip 2018 November 21
Si-glass microfluidics have long provided unprecedented precision, robustness and optical clarity. However, chip fabrication is costly (∼500 USD per chip) and in practice, devices are not heavily reused. We present a method to reduce the cost-per-chip by two orders of magnitude (∼5 USD per chip), rendering Si-glass microfluidics disposable for many applications. The strategy is based on reducing the area of the chip and a whole-chip manifolding strategy that achieves reliable high-pressure high-temperature fluid connectivity. The resulting system was validated at 130 bar and 95 °C and demonstrated in both energy and carbon capture applications. We studied heavy oil flooding with brine, polymer, and surfactant polymer solutions and found the surfactant polymer as the most effective solution which recovered ∼80% of the oil with the least amount of injection while maintaining a relatively uniform displacement front. In a carbon capture application, we measured the dilation of an emerging ionic liquid analog, choline chloride with urea, in gaseous and supercritical CO2. Previously restricted to niche microfluidic applications, the approach here brings the established benefits of Si-glass microfluidics to a broad range of applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app