Add like
Add dislike
Add to saved papers

Oscillating path between self-similarities in liquid pinch-off.

Many differential equations involved in natural sciences show singular behaviors; i.e., quantities in the model diverge as the solution goes to zero. Nonetheless, the evolution of the singularity can be captured with self-similar solutions, several of which may exist for a given system. How to characterize the transition from one self-similar regime to another remains an open question. By studying the classic example of the pinch-off of a viscous liquid thread, we show experimentally that the geometry of the system and external perturbations play an essential role in the transition from a symmetric to an asymmetric solution. Moreover, this transient regime undergoes unexpected log-scale oscillations that delay dramatically the onset of the final self-similar solution. This result sheds light on the strong impact external constraints can have on predictions established to explain the formation of satellite droplets or on the rheological tests applied on a fluid, for example.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app