Add like
Add dislike
Add to saved papers

The Impact of Ultrasound Probe Tilt on Muscle Thickness and Echo-Intensity: A Cross-Sectional Study.

INTRODUCTION/BACKGROUND: To determine the influence of ultrasound probe tilt on reliability and overall changes in muscle thickness and echo-intensity.

MATERIALS AND METHODS: Thirty-six individuals had a total of 15 images taken on both the biceps brachii and tibialis anterior muscles. These images were taken in 2° increments with the probe tilted either upward (U) or downward (D) from perpendicular (0°) to the muscle (U6°, U4°, U2°, 0°, D2°, D4°, and D6°). All images were then saved, stored, and analyzed using Image-J software for echo-intensity and muscle thickness measures. Mean values (2-3 measurements within each probe angle) were compared across each probe angle, and reliability was assessed as if the first measure was taken perpendicular to the muscle, but the second measure was taken with the probe tilted to a different angle (to assume unintentional adjustments in reliability from probe tilt).

RESULTS: Tilting the probe as little as 2° produced a significant 4.7%, and 10.5% decrease in echo-intensity of the tibialis anterior and biceps brachii muscles, respectively, while changes in muscle thickness were negligible (<1%) at all probe angles. The reliability for muscle thickness was greater than that of echo-intensity when the probe was held perpendicular at both measurements (∼1% vs 3%), and the impact that probe tilt had on reliability was exacerbated for echo-intensity measurements (max coefficient of variation: 24.5%) compared to muscle thickness (max coefficient of variation: 1.5%).

CONCLUSION: While muscle thickness is less sensitive to ultrasound probe tilt, caution should be taken to ensure minimal probe tilt is present when taking echo-intensity measurements as this will alter mean values and reduce reliability. Echo-intensity values should be interpreted cautiously, particularly when comparing values across technicians/studies where greater alterations in probe tilt is likely.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app