Add like
Add dislike
Add to saved papers

Isolation and characterization of endophytes from nodules of Mimosa pudica with biotechnological potential.

Legumes establish symbiotic relationships with different microorganisms, which could function as plant growth promotion microorganisms (PGPM). The finding of new PGPM strains is important to increase plant production avoiding or diminishing the use of industrial fertilizers. Thus, in this work we evaluated the plant growth promotion traits of ten strains isolated from Mimosa pudica root nodules. According to the 16S rDNA sequence, the microorganisms were identified as Enterobacter sp. and Serratia sp. To the best of our knowledge this is the first report describing and endophytic interaction between Mimosa pudica and Enterobacter sp. These strains have some plant growth promoting traits such as phosphate solubilization, auxin production and cellulase and chitinase activity. Strains identified as Serratia sp. inhibited the growth of the phytopathogenic fungi Fusarium sp., and Alternaria solani and the oomycete Phytophthora capsici. According to their biochemical characteristics, three strains were selected to test their plant growth promoting activity in a medium with an insoluble phosphate source. These bacteria show low specificity for their hosts as endophytes, since they were able to colonize two very different legumes: Phaseolus vulgaris and M. pudica. Seedlings of P. vulgaris were inoculated and grown for fifteen days. Enterobacter sp. NOD1 and NOD10, promoted growth as reflected by an increase in shoot height as well as an increase in the size and emergence of the first two trifolia. We could localize NOD5 as an endophyte in roots in P. vulgaris by transforming the strain with a Green Fluorescent Protein carrying plasmid. Experiments of co-inoculation with different Rhizobium etli strains allowed us to discard that NOD5 can fix nitrogen in the nodules formed by a R. etli Fix- strain. The isolates described in this work show biotechnological potential for plant growth promoting activity and production of indoleacetic acid and siderophores.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app