Add like
Add dislike
Add to saved papers

MicroRNA-142-3p improves vascular relaxation in uremia.

Atherosclerosis 2018 November 11
BACKGROUND AND AIMS: Chronic kidney disease (CKD) is strongly associated with a high burden of cardiovascular morbidity and mortality. Therefore, we aimed to characterize the putative role of microRNAs (miR)s in uremic vascular remodelling and endothelial dysfunction.

METHODS: We investigated the expression pattern of miRs in two independent end-stage renal disease (ESRD) cohorts and in the animal model of uremic DBA/2 mice via quantitative RT-PCR. Moreover, DBA/2 mice were treated with intravenous injections of synthetic miR-142-3p mimic and were analysed for functional and morphological vascular changes by mass spectrometry and wire myography.

RESULTS: The expression pattern of miRs was regulated in ESRD patients and was reversible after kidney transplantation. Out of tested miRs, only blood miR-142-3p was negatively associated with carotid-femoral pulse-wave velocity in CKD 5D patients. We validated these findings in a murine uremic model and found similar suppression of miR-142-3p as well as decreased acetylcholine-mediated vascular relaxation of the aorta. Therefore, we designed experiments to restore bioavailability of aortic miR-142-3p in vivo via intravenous injection of synthetic miR-142-3p mimic. This intervention restored acetylcholine-mediated vascular relaxation.

CONCLUSIONS: Taken together, we provide compelling evidence, both in humans and in mice, that miR-142-3p constitutes a potential pharmacological agent to prevent endothelial dysfunction and increased arterial stiffness in ESRD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app