Add like
Add dislike
Add to saved papers

Identification of outer membrane protein TolC as the major adhesin and potential vaccine candidate for Vibrio harveyi in hybrid grouper, Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂).

Vibrio harveyi is a serious pathogen of scale drop and muscle necrosis disease in marine commercial fishes. Adhesion to and colonization of the host cells surfaces is the first and crucial step for pathogenic bacterial infection, which is usually mediated by outer membrane proteins (Omps). The objectives of this study were to identify the major adhesin in Omps that plays the essential role in adhesion of V. harveyi to the host cells, and to assess the potential of this adhesin as a vaccine candidate for V. harveyi infection. We observed that pathogenic V. harveyi adhered to the surface of grouper embryonic cells (GEM cells) and induced apoptosis of them. Native Omps were extracted from nine different V. harveyi strains, and five common Omp bands were isolated by SDS-PAGE analysis. Western blot analysis and an anti-native Omp antibodies blocking assay indicated that one strong and several weak immunoreactivity Omps bands presence. Next, a total of five Omps, including TolC, Agg (Agglutination protein), Omp47, Fla (Flagellin), and OmpW, were identified and their encoding genes were cloned, characterized, and expressed in E. coli. The purified recombinant TolC could competitively inhibit the invasion of V. harveyi to GEM cells in vitro, and anti-TolC antibody also could significantly block the adhesion of V. harveyi to GEM cells. When used to immunize hybrid groupers, the recombinant TolC could confer significant protection to fish against experimental V. harveyi challenge. These data suggested that outer membrane protein TolC functions as a major adhesin in V. harveyi and could be a potential vaccine candidate for V. harveyi infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app