Add like
Add dislike
Add to saved papers

Osteoconductive 3D porous composite scaffold from regenerated cellulose and cuttlebone-derived hydroxyapatite.

Recently, usage of marine-derived materials in biomedical field has come into prominence due to their promising characteristics such as biocompatibility, low immunogenicity and wide accessibility. Among these marine sources, cuttlebone has been used as a valuable component with its trace elemental composition in traditional medicine. Recent studies have focused on the use of cuttlebone as a bioactive agent for tissue engineering applications. In this study, hydroxyapatite particles were obtained by hydrothermal synthesis of cuttlebone and incorporated to cellulose scaffolds to fabricate an osteoconductive composite scaffold for bone regeneration. Elemental analysis of raw cuttlebone material from different coastal zones and cuttlebone-derived HAp showed that various macro-, micro- and trace elements - Ca, P, Na, Mg, Cu, Sr, Cl, K, S, Br, Fe and Zn were found in a very similar amount. Moreover, biologically unfavorable heavy metals, such as Ag, Cd, Pb or V, were not detected in any cuttlebone specimen. Carbonated hydroxyapatite particle was further synthesized from cuttlebone microparticles via hydrothermal treatment and used as a mineral filler for the preparation of cellulose-based composite scaffolds. Interconnected highly porous structure of the scaffolds was confirmed by micro-computed tomography. The mean pore size of the scaffolds was 510 µm with a porosity of 85%. The scaffolds were mechanically characterized with a compression test and cuttlebone-derived HAp incorporation enhanced the mechanical properties of cellulose scaffolds. In vitro cell culture studies indicated that MG-63 cells proliferated well on scaffolds. In addition, cuttlebone-derived hydroxyapatite significantly induced the ALP activity and osteocalcin secretion. Besides, HAp incorporation increased the surface mineralization which is the major step for bone tissue regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app