JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The neuroscience of adaptive thermoregulation.

Neuroscience Letters 2019 January 24
The nervous system acts as a biological thermostat by controlling behaviors that regulate the warming and cooling of animals. We review the structures responsible for thermoregulation in three model species: roundworms (Caenorhabditis elegans), flies (Drosophila melanogaster), and rats (Rattus novegicus). We then consider additional features of the nervous system required to explain adaptive plasticity of the set-point temperature and the precision of thermoregulation. Because animals use resources such as energy, water, and oxygen to thermoregulate, the nervous system monitors the abundance of these resources and adjusts the strategy of thermoregulation accordingly. Starvation, dehydration, or hypoxemia alter the activity of temperature-sensitive neurons in the pre-optic area of the hypothalamus. Other regions of the brain work in conjunction with the hypothalamus to promote adaptive plasticity of thermoregulation. For example, the amygdala likely inhibits neurons of the pre-optic area, overriding thermoregulation when a risk of predation or a threat of aggression exists. Moreover, the hippocampus enables an animal to remember microhabitats that enable safe and effective thermoregulation. In ectothermic animals, such as C. elegans and D. melanogaster, the nervous system can alter set-point temperatures as the environmental temperatures change. To build on this knowledge, neuroscientists can use experimental evolution to study adaptation of neural phenotypes in controlled thermal environments. A microevolutionary perspective would leverage our understanding of ecological processes to predict the origin and maintenance of neural phenotypes by natural selection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app