Add like
Add dislike
Add to saved papers

In loco retention effect of magnetic core mesoporous silica nanoparticles doped with trastuzumab as intralesional nanodrug for breast cancer.

Breast cancer is women's most common type of cancer, with a global rate of over 522,000 deaths per year. One of the main problems related to breast cancer relies in the early detection, as the specialized treatment. In this direction was developed, characterized and tested in vivo a smart delivery system, based on radiolabelled magnetic core mesoporous silica doped with trastuzumab as intralesional nanodrug for breast cancer imaging and possible therapy. The results showed that nanoparticles had a size of 58.9 ± 8.1 nm, with specific surface area of 872 m2 /g and pore volume of 0.85 cm3 /g with a pore diameter of 3.15 nm. The magnetic core mesoporous silica was efficiently labelled with 99mTc (97.5% ±0.8) and doped >98%. The cytotoxicity assay, demonstrated they are safe to use. The data were corroborated with the IC50 result of: 829.6 µg ± 43.2. The biodistribution showed an uptake by the tumour of 7.5% (systemic via) and 97.37% (intralesional) with less than 3% of these nanoparticles absorbed by healthy tissues. In a period 6-h post-injection, no barrier delimited by the tumour was crossed, corroborating the use as intralesional nanodrug. [Formula: see text].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app