Add like
Add dislike
Add to saved papers

Propranolol Suppresses Cobalt Chloride-Induced Hypoxic Proliferation in Human Umbilical Vein Endothelial Cells in vitro.

Pharmacology 2018 November 17
BACKGROUND/AIMS: To investigate the effect of propranolol on cobalt chloride (CoCl2)-induced hypoxic proliferation in human umbilical vein endothelial cells (HUVECs).

METHODS: CoCl2 was administrated to HUVECs to mimic hypoxic proliferation in infantile hemangioma. The proliferation of HUVECs was detected by Cell Counting Kit-8. Effects of propranolol on apoptosis and expressions of cell cycle-related genes, CDK4 and cyclin D1, were detected by flow cytometry and RT-PCR respectively. The release of vascular endothelial growth factor (VEGF) and lactate dehydrogenase (LDH) was measured by enzyme-linked immunosorbent assay.

RESULTS: Propranolol significantly inhibited the CoCl2-induced hypoxic proliferation of HUVECs in a dose-dependent manner, and also induced apoptosis and suppressed the expression of CDK4 and cyclin D1. Propranolol also decreased the release of VEGF and LDH in the supernatant.

CONCLUSIONS: Propranolol could inhibit CoCl2-induced hypoxic proliferation of HUVECs through inducing apoptosis and cell cycle arrest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app