Add like
Add dislike
Add to saved papers

Real-Time Mapping of Heat Generation and Distribution in a Laser Irradiated Agar Phantom Loaded with Gold Nanoparticles Using MR Temperature Imaging.

Gold nanoparticles (AuNPs) have shown potential strength in photothermal therapy of cancer. Several techniques have been developed to investigate local heat generation by AuNPs. However, a sensitive thermal imaging technology with high temporal resolution, minimum invasiveness and high spatial resolution is still lacking. In this research study, by using magnetic resonance thermal imaging (MRTI), we reported a technique for monitoring of heat generation and distribution in an AuNPs loaded agar phantom irradiated by laser. Three different agar phantoms with various AuNPs concentrations (0, 8 and 16 µg/ml) were produced and studied. The phantoms were exposed to an external laser [532 nm; 4 min] under MRTI. For real-time temperature monitoring, we employed the theory of proton resonance frequency (PRF) shift. Infrared (IR) camera was employed to measure the actual temperature of each point on the surface of irradiated agar gel. Finally, the correlation between the temperatures obtained by IR camera and MRTI was evaluated. We observed that temperature of the gels loaded by AuNPs at concentration of 0, 8 and 16 µg/ml reached 27.2, 37.8, 45 °C with a total area of heat distribution of 94.98, 452.16, and 907.34 mm2 (from the point of irradiation). During the process of laser irradiation, we observed: (i) a significant rise in temperature, (ii) a dependency between the rate of temperature rise and concentration of AuNPs, and (iii) a direct correlation between temperature change and MR image phase. In addition, statistical analysis showed that the variation of temperatures measured by IR camera and temperatures computed by MRTI had acceptable correlation (R > 0.9). In conclusion, MRTI has a good sensitivity and precision that can be employed for nano-photothermal therapy planning and may be considered for real-time mapping of heat generation and distribution in a laser irradiated tissue loaded by AuNPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app