Add like
Add dislike
Add to saved papers

Maternal folic acid deficiency stimulates neural cell apoptosis via miR-34a associated with Bcl-2 in the rat foetal brain.

Embryonic development is a critical period wherein brain neurons are generated and organized. Maternal dietary folate, a cofactor in one-carbon metabolism, modulates neurogenesis and apoptosis in foetal brain neurons. We hypothesized that aberrant neuronal apoptosis may affect the development of the central nervous system during maternal folic acid deficiency, with evident effects because maternal folic acid deficiency modulates the microRNA-34a associated with Bcl-2 pathway during embryonic development. Four-week-old female Sprague-Dawley rats were divided randomly into two groups (10 rats per group): a folate-deficient diet group and a folate-normal diet group. The diets were administered to the rats 60 d before mating, which was continued for the pregnant dams until parturition. Maternal folic acid deficiency increased neuronal apoptosis in the hippocampus and the cortex in the offspring. Furthermore, maternal folic acid deficiency increased the ratio of cleaved caspase-3/caspase-3, followed by an increase in caspase-3 activity. Moreover, maternal folic acid deficiency downregulated Bcl-2 and upregulated Bax, and this effect associate with maternal folic acid deficient increases expression of microRNA-34a. Together, the present results indicate that maternal folic acid deficiency stimulates neuronal apoptosis via microRNA-34a associated with Bcl-2 signalling in rat offspring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app