Add like
Add dislike
Add to saved papers

Effect of peripheral blood mononuclear cell cryopreservation on innate and adaptive immune responses.

Cryopreservation of blood-derived immune cells is commonly used in clinical trials to examine immunological responses. However, studies elucidating the effects of cryopreservation on peripheral blood mononuclear cell (PBMC) responses have shown inconsistent results making it difficult to draw meaningful conclusions. Therefore we sought to address this issue by comparing key innate and adaptive immune parameters between freshly-isolated and cryopreserved PBMCs from healthy adults. We examined the effect of cryopreservation on the expression of key markers on innate and adaptive immune cell populations (i.e. CD4+ and CD8+ [T cells], CD14+ [monocytes], CD19+ [B cells], CD56+ [NK cells] or CD19 + CD27+ [memory B cells]), on cytokine secretion (TNF-α, INF-γ, IL-1β, IL-10, IL-6, MCP-1 and RANTES) in cultured PBMC supernatants following stimulation with a range of Toll-like receptor (TLR) agonists, as well as on antigen-specific memory B cell enumeration by ELISpot. We found that cryopreservation had no effect on the expression of immune markers on innate and adaptive immune cells as well on the number of antigen-specific memory B cells. However, the response to TLR ligands such as FLA-ST, CpG and LPS was variable with increased cytokine production by cryopreserved PBMCs observed compared to freshly-isolated PBMCs. Our results suggest that the effect of cryopreservation on the biological response of immune cell populations needs to be carefully considered, particularly in the context of clinical studies that rely on these immune outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app