Add like
Add dislike
Add to saved papers

Regulation of heterologously expressed 5-HT 1B receptors coupling to K channels in AtT-20 cells.

BACKGROUND AND PURPOSE: Serotonin 5-HT1B receptors are widely expressed G protein-coupled receptors and a target of triptans, the most commonly prescribed anti-migraine drugs. There is very limited information about the acute, agonist-induced regulation of 5-HT1B receptor signalling and so we sought to characterize this in a neuron-like system.

EXPERIMENTAL APPROACH: Epitope-tagged human 5-HT1B receptors were expressed in mouse AtT20 cells. 5-HT1B receptor signalling was assessed using whole-cell patch-clamp recordings of endogenous G protein-gated inwardly rectified K channels (GIRK), and receptor localization measured using immunofluorescence.

KEY RESULTS: 5-HT (EC50 65 nM) and sumatriptan (EC50 165 nM) activated GIRK in AtT20 cells expressing 5-HT1B receptors. Continuous application of both 5-HT (EC50 120 nM) and sumatriptan (EC50 280 nM) produced profound desensitization of 5-HT1B receptor signalling within a few minutes. Complete recovery from desensitization was observed after 10 min. Both 5-HT and sumatriptan induced significant heterologous desensitization of somatostatin-activated GIRK currents, with the 5-HT-induced heterologous desensitization being blocked by the protein kinase inhibitor staurosporine. Both agonists induced modest 5-HT1B receptor internalization, with a time course much slower than receptor desensitization.

CONCLUSIONS AND IMPLICATIONS: In AtT-20 cells, 5-HT1B receptors undergo rapid and reversible desensitization at concentrations of agonist similar to those required to activate the receptor. Desensitization is incomplete, and the continued signalling of the receptor in the presence of the agonist may lead to cellular adaptations. Finally, 5-HT1B receptor activation causes significant heterologous desensitization, which may lead to a reduced effectiveness of unrelated drugs in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app