Add like
Add dislike
Add to saved papers

A novel approach to preparation of nano-adsorbent from agricultural wastes (Saccharum officinarum leaves) and its environmental application.

Saccharum officinarum leaves (SL) assisted nano-silica (NS) were synthesized and used as adsorbent to remove Pb2+ and Zn2+ from aqueous solutions. The crystalline nature, functional group, and morphology structure of synthesized NS were characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission-scanning electron microscopy (FESEM) with EDS mapping, and transmission electron microscopy (TEM). The surface area and charge of the NS were also analyzed by Brunauer-Emmett-Teller (BET) and zeta potential analysis. Removal efficiency of Pb2+ and Zn2+ from aqueous solutions was carried out under batch mode studies (pH, dose, equilibrium time with initial heavy weight metal ion concentration). The adsorption parameters were determined using pseudo-first-order, pseudo-second-order, Langmuir, and Freundlich models. The kinetics and isotherms data were well fitted with pseudo-second-order and both Langmuir and Freundlich isotherm models. The maximum adsorption capacities for Pb2+ and Zn2+ onto NS at room temperature (37 °C) were found to be 148 mg/g and 137 mg/g, respectively. Finally, we conclude that the NS synthesized from SL leaves (agricultural waste material) were found to be economically viable, promising adsorbent for metal ions from aqueous solutions and also efficient technology for waste management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app