Add like
Add dislike
Add to saved papers

Membrane insertion and intercellular transfer of glycosylphosphatidylinositol-anchored proteins: potential therapeutic applications.

Anchorage of a subset of cell surface proteins in eukaryotic cells is mediated by a glycosylphosphatidylinositol (GPI) moiety covalently attached to the carboxy-terminus of the protein moiety. Experimental evidence for the potential of GPI-anchored proteins (GPI-AP) of being released from cells into the extracellular environment has been accumulating, which involves either the loss or retention of the GPI anchor. Release of GPI-AP from donor cells may occur spontaneously or in response to endogenous or environmental signals. The experimental evidence for direct insertion of exogenous GPI-AP equipped with the complete anchor structure into the outer plasma membrane bilayer leaflets of acceptor cells is reviewed as well as the potential underlying molecular mechanisms. Furthermore, promiscuous transfer of certain GPI-AP between plasma membranes of different cells in vivo under certain (patho)physiological conditions has been reported. Engineering of target cell surfaces using chimeric GPI-AP with complete GPI anchor may be useful for therapeutic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app