Add like
Add dislike
Add to saved papers

Fundamentals of Force-Controlled Friction Riveting: Part I-Joint Formation and Heat Development.

Materials 2018 November 16
This work presents a systematic study on the correlations between process parameters and rivet plastic deformation, produced by force-controlled friction riveting. The 5 mm diameter AA2024 rivets were joined to 13 mm, nominal thickness, polyetherimide plates. A wide range of joint formations was obtained, reflecting the variation in total energy input (24⁻208 J) and process temperature (319⁻501 °C). The influence of the process parameters on joint formation was determined, using a central composite design and response surface methodology. Friction time displayed the highest contribution on both rivet penetration (61.9%) and anchoring depth (34.7%), and friction force on the maximum width of the deformed rivet tip (46.5%). Quadratic effects and two-way interactions were significant on rivet anchoring depth (29.8 and 20.8%, respectively). Bell-shaped rivet plastic deformation-high mechanical interlocking-results from moderate energy inputs (~100 J). These geometries are characterized by: rivet penetration depth of 7 to 9 mm; maximum width of the deformed rivet tip of 9 to 12 mm; and anchoring depth higher than 6 mm. This knowledge allows the production of optimized friction-riveted connections and a deeper understanding of the joining mechanisms, further discussed in Part II of this work.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app