Add like
Add dislike
Add to saved papers

Substitution Reactions of Gaseous Ions in a Three-Dimensional Quadrupole Ion Trap.

Substitution reactions between gaseous ions and neutral substrate molecules are of ongoing high interest. To investigate these processes in a qualitative and quantitative manner, we have constructed a device, with which a defined amount of a volatile substrate can be mixed with a defined amount of helium gas and added into a three-dimensional quadrupole ion trap. From the known inner volume of the device, the known ratio nsubstrate :nHe of the mixture, and the determined absolute partial pressure of helium in the ion trap, we can derive the partial pressure of the substrate in the ion trap and, thus, convert the directly observable pseudo-first order rate constants of the substitution reactions into absolute bimolecular rate constants. We have tested the device by investigating a series of SN 2 reactions of Br- and CF3 CH2 O- anions as well as ligand exchange reactions of ligated Na+ cations. As the obtained results suggest, the described device makes it possible to determine the bimolecular rate constants of substitution reactions as well as other ion-molecule reactions with satisfactory accuracy and reliability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app