Add like
Add dislike
Add to saved papers

Effects of Ultraviolet Irradiation on Cellular Senescence in Keratinocytes Versus Fibroblasts.

Aging is a biologic process characterized by time-dependent functional declines that are influenced by oxidative stress-induced inflammatory reactions. In particular, ultraviolet (UV) irradiation plays a key role in cellular senescence in photo-aged skin. However, the cellular senescence of epidermal keratinocytes and dermal fibroblasts by UV irradiation may differ depending on the exposure time and dosage of UV irradiation. Therefore, the purpose of the study was to evaluate and compare the effects of UV irradiation on cellular senescence in human epidermal keratinocytes (HaCaT) and human dermal fibroblasts (HDFs). After cell viability test, 200 mJ/cm UV irradiation was used in this study. To evaluate the reactive oxygen species and reactive nitrogen species production, the levels of glutathione (GSH) and nitrite (NO2) were measured. We also performed reverse transcription-polymerase chain reaction, Western blot analysis, and senescence-associated beta-galactosidase assay. An overall decrease in GSH and an increase in NO2 were observed in the HaCaT and HDF cells. However, the time-line and dose-dependent effects varied. Higher expressions of tumor necrosis factor-α, inducible nitric oxide synthase, and interleukin-1β than that of the control group were observed in both cells. The HDF cells showed high levels of matrix metallopeptidase 9 and neutral endopeptidase protein but low levels of SIRT1 and procollagen I. The expression of nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) was increased in the HaCaT cells, but not in the HDF cells. The NF-κB peaked at 1 hour after UV irradiation in the HaCaT cells. The "turning-on" signal was faster in the irradiated HaCaT cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app