Add like
Add dislike
Add to saved papers

Conformal carbon coating on WS 2 nanotubes for excellent electrochemical performance of lithium-ion batteries.

Nanotechnology 2019 January 19
WS2 nanotubes with carbon coatings in a core-shell structure (i.e. WS2 @C) are synthesized through a facile method based on the Lewis acid-activated thioglycosylation chemistry. The obtained WS2 @C shows a conformal coverage of conductive amorphous carbon on the surface of WS2 after thermal treatment, with the thickness of carbon layer being controlled by adjusting the molar ratios of saccharide to nanotube during the synthesis process. When applied in lithium-ion batteries, the WS2 @C structures show higher reversible capacity of 638 mAh g-1 at a current density of 500 mA g-1 and significantly improved cycling stability as compared to the pristine WS2 nanotubes. Post-mortem examinations of the electrode materials reveal that the carbon coatings could preserve the morphology of WS2 nanotubes and assist in forming stable solid electrolyte interface layers, leading to enhanced cycling stability. As such, the WS2 @C structures show great potential in the application of lithium-ion batteries for achieving excellent electrochemical performances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app