Add like
Add dislike
Add to saved papers

Flow-Assisted Switchable Catalysis of Metal Ions in a Microenvelope System Embedded with Core-Shell Polymers.

Many efforts have been made on stimuli-responsive switchable catalysis to trigger catalytic activity over various chemical reactions. However, the reported light-, pH- or chemically responsive organocatalysts are mostly incomplete in the aspects of shielding efficiency and long-term performance. Here, we advance the flow-assisted switchable catalysis of metal ions in a microenvelope system that allows  the on-off catalysis mode on demand for long-lasting catalytic activity. Various metal-ion catalysts can be selectively embedded in a novel polymeric core-shell of the heteroarm star copolymer of poly(styrene) and poly(4-vinylpyridine) emanated from a polyhedral oligomeric silsesquioxane center. The immobilized core-shell polymer on the inner wall of a poly(dimethylsiloxane) envelope microreactor shows on-off switching catalysis between the expanded active mode and contracted protective mode under continuous flow of solvents or subsequent dry conditions. In particular, the preserved catalytic activity of toxic Hg2+ for oxymercuration was demonstrated even for 2 weeks without leaching, whereas the activity of moisture-sensitive Ru3+ ions for polymerization of methyl methacrylate was maintained even after 5 days from an open atmosphere. It is practical that the tight environment of the enveloped microfluidic system facilitates cyclic switching between the reaction-"on" and -"off" modes of such toxic, sensitive/expensive catalysts for long-term prevention and preservation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app