Add like
Add dislike
Add to saved papers

A stochastic microstructure model for particle reinforced aluminium matrix composites.

Journal of Microscopy 2018 November 17
Metal matrix composites are complex materials consisting of various phases which can display largely different mechanical properties. The deformation behaviour of these composites cannot be sufficiently modelled by averages or simple particle shapes due to the local stresses that occur on the particle edges. Therefore, a sophisticated model of the microstructure is needed. We introduce a method for stochastic modelling of a silicon carbide (SiC) particle reinforced aluminium matrix composite. The SiC particles are modelled by Laguerre polyhedra generated by densely packed spheres. The shape factors of the polyhedra have been fitted to the particle shapes observed in three-dimensional images. Particle elongation in extrusion direction and the observed log-normal volume distribution of the particles are included in the model by suitable scaling. An outlook is presented on how to model the grains of the polycrystalline aluminium matrix and intermetallic precipitates, which result from the strengthening mechanism of the matrix. LAY DESCRIPTION: Metal matrix composites are complex materials consisting of different phases which can display largely different mechanical properties. The deformation behaviour of these composites cannot be sufficiently modelled by averages or simple particle shapes due to the local stresses that occur on the particle edges. Therefore, a sophisticated model of the microstructure is needed. We introduce a method of stochastic modelling of a silicon carbide (SiC) particle reinforced aluminium matrix composite. The SiC particles are modelled by Laguerre polyhedra generated by densely packed spheres. The shape factors of the polyhedra have been fitted to the SiC shapes observed in three-dimensional images. Additionally, the polyhedra are scaled anisotropically to account for orientation anisotropy and to obtain a log-normal volume distribution. An outlook is presented on how to model the aluminium phase's grains and intermetallic precipitates, which result from the strengthening mechanism of the aluminium matrix alloy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app