Add like
Add dislike
Add to saved papers

Characterization of H3 methylation in regulating oocyte development in cyprinid fish.

Histone post-modifications are important epigenetic markers involved in multiple cellular processes via regulation of gene transcription or remodeling of chromatin structure. Oocyte development is a critical process under rigorous control to prevent the generation of aberrant gametes. However, the regulatory mechanism of oocyte early development is not well-understood due to the tiny size and poor distinguishability of the gonad in juvenile stages. Here, two cyprinid hybrid fishes, a sterile allotriploid fish and a gynogenetic hybrid fish with delayed oocyte development, provided research models to investigate the mechanisms involved. We used cytogenetic and molecular methods to confirm the pachytene arrest of oocytes in allotriploid fish and gynogenetic hybrid fish. On the basis of these developmental differences, we screened 21 different histone H3 modifications by ELISA and found that four modifications (H3K4me3, H3K9me3, H3K79me, and H3K79me3) differed significantly in the two cyprinid hybrid fishes. Changes in histone methylation at the three residues (H3K4, K9, K79) were caused by specific methyltransferases and demethylases. Our results provide new insights into the epigenetic regulation of oocyte early development in fish, a process critical for understanding of reproductive biology and with practical applications in the aquacultural breeding industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app