Add like
Add dislike
Add to saved papers

Modeling Nonlinear Synaptic Dynamics: A Laguerre-Volterra Network Framework for Improved Computational Efficiency in Large Scale Simulations.

Synapses are key components in signal transmission in the brain, often exhibiting complex non-linear dynamics. Yet, they are often crudely modelled as linear exponential equations in large-scale neuron network simulations. Mechanistic models that use detailed channel receptor kinetics more closely replicate the nonlinear dynamics observed at synapses, but use of such models are generally restricted to small scale simulations due to their computational complexity. Previously, we have developed an ``input-output'' (IO) synapse model using the Volterra functional series to estimate nonlinear synaptic dynamics. Here, we present an improvement on the IO synapse model using the extbf{Laguerre-Volterra network (LVN) framework. We demonstrate that utilization of the LVN framework helps reduce memory requirements and improves the simulation speed in comparison to the previous iteration of the IO synapse model. We present results that demonstrate the accuracy, memory efficiency, and speed of the LVN model that can be extended to simulations with large numbers of synapses. Our efforts enable complex nonlinear synaptic dynamics to be modelled in large-scale network models, allowing us to explore how synaptic activity may influence network behavior and affects memory, learning, and neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app