Add like
Add dislike
Add to saved papers

Integrated Bacterial Identification and Antimicrobial Susceptibility Testing for Polymicrobial Infections Using Digital PCR and Digital High-Resolution Melt in a Microfluidic Array Platform.

In diagnosing bacterial infection, rapid bacterial identification (ID) and antimicrobial susceptibility testing (AST) are critical to clinicians in order to provide an effective treatment in a timely manner. The gold standard, culture-based approach provides both ID and antimicrobial susceptibility but requires several days of turnaround time. Especially in polymicrobial infections, where there are more than one organisms interacting collectively that can complicate the treatment. Here, we demonstrate a rapid bacterial diagnostic approach that is capable of bacterial ID/AST in heterogeneous samples within less than 4 hours by using digital PCR (dPCR) and digital high-resolution melt via microfluidic devices. By utilizing dPCR, we are able to quantify amount of nucleic acid, which correlates to phenotypic responses of {\bf individual pathogens in a mixed sample and also shorten the required time of antibiotic exposure. In addition, we employ a machine learning algorithm to automatically identify bacterial species based on melt profiles of 16S rRNA gene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app