Add like
Add dislike
Add to saved papers

Myocardial Ischemia Diagnosis Using a Reduced Lead System.

This research presents a novel statistical model for diagnosing acute myocardial infarction (AMI). The model is based on features extracted from a reduced lead system consisting of a subset of three leads from the standard 12-lead ECG. We selected a set of relevant parameters commonly used in the clinical practice for ECG-based AMI diagnosis, namely ST elevation and T-wave maximum. We also selectedfeatures, not used in clinical practice, that were derived from vectorcardiography and computed on the reduced three-lead system (pseudo-VCG parameters). To validate the model, we used 104 patients coming from the Physionet STAFF III database which contains 12-lead ECG recordings at baseline and in coronary artery occlusion condition during angioplasty (PTCA). Results show that pseudo-VCG features are able to diagnose AMI slightly better than ST elevation and T-wave maximum features together (area under the ROC curve (AUC) 0.87 vs AUC 0.85). When combining pseudo-VCG features together with ST elevation, and T-wave maximum, the performance improved significantly (AUC 0.95, sensitivity 89.6% and specificity 82.7%). Results indicate a potential for diagnosing AMI using the proposed reduced lead system and the selected set of features. We suggest its possible use for diagnosing AMI in long-term, ambulatory and home monitoring situations, allowing an earlier and faster diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app