Add like
Add dislike
Add to saved papers

Hemodynamic Evaluation of an Intra-Atrial Blood Pump on a Pulsatile Mock Circulatory Loop.

An intra-atrial pump (IAP) was proposed that would be affixed to the atrial septum to support the compromised left ventricle (LV) without harming the ventricular tissue in patients with early-stage heart failure. The IAP is designed to operate in parallel with the LV, drawing blood from the left atrium and unloading the LV. In previous hydraulic studies, different blade geometries were tested for the IAP; however, it is important to know how the blade geometry affects the IAP's hemodynamic performance in the human cardiovascular system. In this study, a mock circulatory loop (MCL) with physiological response was used to evaluate the hemodynamic effects of IAP blade geometry and connection configuration in the human cardiovascular system. In a $2 \times 2$ study, two different blade geometries (with steep vs flat pressure/flow curves) were tested in two different connection configurations: the proposed configuration (left atrium to aorta) and the conventional configuration for LVADs (LV to aorta). We found that atrial cannulation is feasible and creates a beneficial hemodynamic environment, although it is inferior to the one created by ventricular cannulation. The steepgradient pump performed better than the flat-gradient pump in atrial insertion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app