Add like
Add dislike
Add to saved papers

A Novel Time-Domain Descriptor for Improved Prediction of Upper Limb Movement Intent in EMG-PR System.

Electromyogram pattern recognition (EMG-PR) based control is a potential method capable of providing intuitively dexterous control functions in upper limb prostheses. Meanwhile, the feature extraction method adopted in EMG-PR based control is considered as an important factor that influences the performance of the prostheses. By exploiting the limitations of the existing feature extraction methods, this study proposed a new feature extraction method to effectively characterize EMG signal patterns associated with different limb movement intent. The performance of the proposed 2-dimensional novel time-domain feature set (NTDFS) was investigated using classification accuracy and feature space separability metrics across five subjects' EMG recordings, and compared with four different existing methods. In comparison to four other previously proposed feature extraction methods, the NTDFS achieved significantly better performance with increment in accuracy in the range of 5.20% ∼ 8.40% at p<0.05. Additionally, by applying principal component analysis (PCA) technique, the PCA feature space for NTDFS show obvious class separability in comparison to the other existing feature extraction methods. Thus, the proposed NTDFS may facilitate the development of accurate and robust clinically viable EMG-PR based prostheses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app