Add like
Add dislike
Add to saved papers

Single-Cell Transcriptomics Reveals Heterogeneity and Drug Response of Human Colorectal Cancer Organoids.

Organoids are three-dimensional cell cultures that mimic organ functions and structures. The organoid model has been developed as a versatile in vitro platform for stem cell biology and diseases modeling. Tumor organoids are shown to share ~ 90% of genetic mutations with biopsies from same patients. However, it's not clear whether tumor organoids recapitulate the cellular heterogeneity observed in patient tumors. Here, we used single-cell RNA-Seq to investigate the transcriptomics of tumor organoids derived from human colorectal tumors, and applied machine learning methods to unbiasedly cluster subtypes in tumor organoids. Computational analysis reveals cancer heterogeneity sustained in tumor organoids, and the subtypes in organoids displayed high diversity. Furthermore, we treated the tumor organoids with a first-line cancer drug, Oxaliplatin, and investigated drug response in single-cell scale. Diversity of tumor cell populations in organoids were significantly perturbed by drug treatment. Single-cell analysis detected the depletion of chemosensitive subgroups and emergence of new drug tolerant subgroups after drug treatment. Our study suggests that the organoid model is capable of recapitulating clinical heterogeneity and its evolution in response to chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app