Add like
Add dislike
Add to saved papers

Robust Local Field Potential-based Neural Decoding by Actively Selecting Discriminative Channels.

Local field potentials (LFPs) have been proposed as a neural decoding signal to compensate for spike signal deterioration in invasive brain-machine interface applications. However, the presence of redundancy among LFP signals at different frequency bands across multiple channels may affect the decoding performance. In order to remove redundant LFP channels, we proposed a novel Fisher-distance ratio-based method to actively batch select discriminative channels to maximize the separation between classes. Experimental evaluation was conducted on 5 non-consecutive days of data from a non-human primate. For data from each day, the first experimental session was used to generate the training model, which was then used to perform 4-class decoding of signals from other sessions. Decoding achieved an average accuracy of 79.55%, 79.02% and 79.40% using selected LFP channels for beta, low gamma and high gamma frequency bands, respectively. Compared with decoding using full LFP channels, decoding using selected LFP channels in high gamma band resulted in an increase of 8.67% in accuracy, even if this accuracy was still 7.26% lower than that of spike-based decoding. These results demonstrate the effectiveness of the proposed method in selecting discriminative LFP channels for neural decoding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app