Add like
Add dislike
Add to saved papers

Disrupted network topology in patients with Lewy bodies dementia compared to Alzheimer's disease, Parkinson disease dementia and Health Control .

The clinical manifestation of Lewy body dementia (DLB) is distinct from Alzheimer's disease (AD), but overlap with Parkinson's disease dementia (PDD). However, little is known about different topology properties of abnormal brain networks associated with these neurodegenerative diseases. In order to study the difference of brain networks in various dementia subtypes, we used $^{\mathbf {18}}\text{F}$-Fluorodeoxyglucose positron emission tomography ($^{\mathbf {18}}\text{F}$-FDG PET) images and graph theory methods to investigate altered whole-brain intrinsic glucose metabolic functional networks in three Chinese dementia groups compared to healthy control (HC) group, including 22 AD patients, 18 PDD patients, 22 DLB patients and 22 HC subjects from Huashan Hospital, Shanghai, China. The experimental results disclosed that in the three dementia groups, compared to HC group, the small-world characteristics were lost. Additionally, compared with HC group, the clustering coefficients of three dementia groups were higher; the characteristic path lengths were longer. In terms of local efficiency and global efficiency, it was at the lowest level in DLB group. We also found differences about distributions of hub regions amongst the four groups. This finding could further help physicians to understand pathological mechanisms of different dementia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app