Add like
Add dislike
Add to saved papers

Predicting Lymph Node Metastasis in Head and Neck Cancer by Combining Many-objective Radiomics and 3-dimensioal Convolutional Neural Network through Evidential Reasoning.

Lymph node metastasis (LNM) is a significant prognostic factor in patients with head and neck cancer, and the ability to predict it accurately is essential for treatment optimization. PET and CT imaging are routinely used for LNM identification. However, uncertainties of LNM always exist especially for small size or reactive nodes. Radiomics and deep learning are the two preferred imaging-based strategies for node malignancy prediction. Radiomics models are built based on handcrafted features, and deep learning can learn the features automatically. We proposed a hybrid predictive model that combines many-objective radiomics (MO-radiomics) and 3-dimensional convolutional neural network (3D-CNN) through evidential reasoning (ER) approach. To build a more reliable model, we proposed a new many-objective radiomics model. Meanwhile, we designed a 3D-CNN that fully utilizes spatial contextual information. Finally, the outputs were fused through the ER approach. To study the predictability of the two modalities, three models were built for PET, CT, and PET& CT. The results showed that the model performed best when the two modalities were combined. Moreover, we showed that the quantitative results obtained from the hybrid model were better than those obtained from MO-radiomics and 3D-CNN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app