Add like
Add dislike
Add to saved papers

Stable isotopes reveal opportunistic foraging in a spatiotemporally heterogeneous environment: Bird assemblages in mangrove forests.

Environmental heterogeneity can foster opportunistic foraging by mobile species, resulting in generalized resource and habitat use. Determining species' food web roles is important to fully understand how ecosystems function, and stable isotopes can provide insight into the foraging ecology of bird assemblages. We investigated flexibility of food choice in mangrove bird assemblages of northeast Australia by determining whether species' carbon and nitrogen isotopic values corresponded to foraging group classification described in the literature, such as groups of species that are omnivorous or insectivorous. Subsequently, we evaluated foraging group isotopic niche size, overlap, degree of individual specialisation, and the probable proportions of coastal resources that contribute to their collective diets. We found that mangrove birds are more opportunistic when foraging than expected from previous diet studies. Importantly, relationships between the dietary diversity of species within a foraging group and isotopic niche size are spatially inconsistent, making inferences regarding foraging strategies difficult. However, quantifying individual specialisation and determining the probable relative contributions of coastal resources to the collective diet of isotope-based foraging groups can help to differentiate between specialised and generalised foraging strategies. We suggest that flexibility in mangrove bird foraging strategy occurs in response to environmental heterogeneity. A complementary approach that combines isotopic analysis with other dietary information (collated from previous diet studies using visual observation or gut content analyses) has provided useful insight to how bird assemblages partition resources in spatiotemporally heterogeneous environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app