Add like
Add dislike
Add to saved papers

Amido Black 10B a widely used azo dye causes DNA damage in pro- and eukaryotic indicator cells.

Chemosphere 2018 November 4
Acid Black 10B (AB10B) is widely used for the production of textiles, leather and prints. It is a representative of azo dyes and it is well documented that some of these compounds are mutagenic per se, and that cleavage products (in particular aromatic amines) may cause damage of the genetic material and cancer. Since no toxicological data on AB10B have been published, we evaluated its mutagenic activity in Salmonella/microsome assays and studied its acute toxic and genotoxic properties in a human derived liver cell line (HepG2) which retained the activities of drug metabolizing enzymes. The compound did not cause cytotoxicity (MTT assay), but clear genotoxic effects were detected in pro- and eukaryotic indicator cells. Dose dependent induction of his+ revertants was seen in strain TA98 which detects frameshift mutations without metabolic activation; a more pronounced effect was seen in its derivative YG1024 which overexpresses N-acetyltransferase. Induction of single/double strand breaks by Comet assay was detected with concentrations > 0.125 mg/mL in liver derived cells; as well as increased rates for micronucleus (reflecting structural and numeric chromosomal aberrations) and nuclear buds which are a consequence of gene amplifications were seen with a higher dose (2.0 mg/mL) (p < 0.05; Tukey's test). The mutational pattern which was observed in the bacterial tests indicates that the cleavage product p-nitroaniline may cause the genotoxic effects of the dye. Our findings indicate that exposure of humans and the release of the compound into the environment may lead to adverse effects due to its DNA damaging activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app