Add like
Add dislike
Add to saved papers

The effect of algal turbidity on larval performance and the ontogeny of digestive enzymes in the grey mullet (Mugil cephalus).

A study comprised of two trials determined the effects of water turbidity produced by live microalgae and inert clay particles on the larval rearing of grey mullet (Mugil cephalus). Trial 1 evaluated the effect of microalgae produced water turbidity on grey mullet larval performance and digestive tract (DT) enzyme ontogeny. Two microalgae (Nannochloropsis oculata and Isochrysis galbana) water turbidity levels (0.76 and 1.20 NTU, respectively) and a non-microalgae control (0.26 NTU) were investigated on 2 to 23 dph grey mullet larvae. The higher turbidity (1.2 NTU) larvae (5 dph) consumed markedly (P < .05) more rotifers than other treatment fish, independently of the microalgae type. There was no clear effect of the turbidity treatments on DT enzyme ontogeny. However, in all treatments lipase and alkaline proteases appeared to be modulated by the diet. Alkaline phosphatase activity was ca. 8 times higher and α-amylase activity increased 5.3 times in 79 dph fish compared to 40 dph individuals. The ratio of alkaline phosphatase and leucine-alanine aminopeptidase indicated gut maturation occurred around 61 dph. Trial 2 compared the most effective N.occulata produced turbidity level (1.2 NTU) with the identical water turbidity produced by inert clay on larval performance. M. cephalus larvae exposed to high algal turbidity demonstrated superior performance (P < .05), in terms of rotifer ingestion, dry weight gain and survival, compared to cohorts reared under the clay treatment and the lower microalgae produced turbidity. These findings suggested that water algal turbidity is not the dominant factor determining improved grey mullet larval performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app