Add like
Add dislike
Add to saved papers

Characterizing contrast origins and noise contribution in spin-echo EPI BOLD at 3 T.

In this work, we characterize contrast origins and noise contributions of spin echo (SE) EPI BOLD signal at 3 T. SE BOLD is a fMRI method of choice for imaging brain regions affected by susceptibility artifacts at lower fields, but its sensitivity remains a limiting factor for whole-brain imaging. To resolve this, the signal and noise contributions as well as TE dependence of SE EPI are characterized in this study. By integrating a two-compartment BOLD model with a physiological-thermal noise model, a new SE-BOLD signal model was introduced. The new SE-BOLD model was fit into SE-EPI fMRI data acquired during hypercapnic manipulations at various TEs, using typical fMRI voxel dimensions (3.4 × 3.4 × 5 mm3 ). Our model predicts intra- and extravascular signal and noise contributions consistent with our understanding of the SE-EPI contrast mechanism. The intravascular BOLD contribution is shown to dominate at TEs lower than tissue T2 , but the physiological noise contributions in SE-EPI signal is also shown to be lower than that of gradient-echo (GE). Furthermore, SE-EPI contrast-to-noise ratio (CNR) is not maximized at tissue T2 as is typically assumed. To summarize, a new SE-BOLD model was proposed to characterize SE-BOLD contrast and physiological noise contribution at 3 T. Results suggests that SE-BOLD sensitivity can be improved by using shorter TEs, making it a more attractive choice for fMRI, especially in regions with susceptibility artifacts. Such optimizations could also help extend the application of SE BOLD to WM fMRI studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app