Add like
Add dislike
Add to saved papers

Downregulation of HCN1 channels in hippocampus and prefrontal cortex in methamphetamine re-exposed mice with enhanced working memory.

Physiological Research 2018 October 24
The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation (HCN) channels play a potential role in the neurological basis underlying drug addiction. However, little is known about the role of HCN channels in methamphetamine (METH) abuse. In the present study, we examined the changes in working memory functions of METH re-exposed mice through Morris water maze test, and investigated the protein expression of HCN1 channels and potential mechanisms underlying the modulation of HCN channels by Western blotting analysis. Mice were injected with METH (1 mg/kg, i.p.) once per day for 6 consecutive days. After 5 days without METH, mice were re-exposed to METH at the same concentration. We found that METH re-exposure caused an enhancement of working memory, and a decrease in the HCN1 channels protein expression in both hippocampus and prefrontal cortex. The phosphorylated extracellular regulated protein kinase 1/2 (p-ERK1/2), an important regulator of HCN channels, was also obviously reduced in hippocampus and prefrontal cortex of mice with METH re-exposure. Meanwhile, acute METH exposure did not affect the working memory function and the protein expressions of HCN1 channels and p-ERK1/2. Overall, our data firstly showed the aberrant protein expression of HCN1 channels in METH re-exposed mice with enhanced working memory, which was probably related to the down-regulation of p-ERK1/2 protein expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app