Add like
Add dislike
Add to saved papers

Mucociliary Defense: Emerging Cellular, Molecular, and Animal Models.

Respiratory tissues are bombarded by billions of particles daily. If allowed to accumulate, these particles can cause injury, inflammation, or infection, and thus may significantly disrupt airflow and gas exchange. Mucociliary defense, a primary mechanism for protecting host tissues, operates through the coordinated functions of mucus and cilia that trap and eliminate inhaled materials. Mucociliary function is also required for the elimination of endogenous cells and debris. Although defense is necessarily robust, it is also tightly regulated to minimize physiologic disruption of the host. Indeed, mucociliary dysfunction contributes to the pathogenesis of many lung diseases-including asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis-in which airflow limitation, inflammation, persistent tissue injury, and structural remodeling occur. Here, we highlight recent advances in cilia and mucin biology, the importance of well-controlled mucociliary interactions, and the need to better understand how these regulate innate barrier and immune defense.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app