Add like
Add dislike
Add to saved papers

High-speed quantitative 3D imaging by dual-illumination holographic microscopy.

A new blood flow imaging (BFI) technique using digital holography with double illumination of the sample is proposed. We imaged the moving red blood cells (RBCs) using a two microscope objective lenses setup. The setup consists in a larger angle of separation (90 °) between the two illumination beams, allowing a wider angular rotation at good z resolution. Moreover, the setup geometry allows an easier displacement of the sample in all directions. Results show that this technique is able to perform phase-shifting reconstruction for the two beams at the same time which is more suitable for the future implementation of live 3D holography. Experimental results are carried out for the verification of the effectiveness of the proposed technique on a zebrafish larvae sample. RESEARCH HIGHLIGHTS: Blood flow imaging techniques are often invasive and image analysis is time consuming. To alleviate this issue an imaging technique based on dual illumination in holographic domain is proposed. This method has been validated on zebrafish embryos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app