Add like
Add dislike
Add to saved papers

Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain.

Plastics are recalcitrant and inert to degrade, and destabilization leads to accumulate in the terrestrial and marine ecosystems; need for the development of strategies for reducing these plastic wastes in a sustainable manner would be revolutionary. We studied the bacterial adherence, degradation and destabilization of polyvinylchloride (PVC), low-density polyethylene (LDPE), and high-density polyethylene (HDPE) by marine bacterial strain AIIW2 by a series of analytical and microscopic observations over 3 months. Based on 16S rRNA gene sequence and the phylogenetic analysis of the strain AIIW2, it showed 97.39% similarity with Bacillus species. Degradation of plastics was determined by the weight loss after 90 days with bacterial strain which detected up to 0.26 ± 0.02, 0.96 ± 0.02, and 1.0 ± 0.01% for PVC, LDPE, and HDPE films, respectively over initial weights. The mineralization of plastic film was found to be maximum in LDPE followed by HDPE and PVC. Bacterial interaction had increased roughness and deteriorated the surface of plastics which is revealed by the scanning electron microscope and atomic force microscope. Bending vibrations of the alkane rock chain (-CH2 and -CH3 ) and carbonyl (-CO) regions in LDPE and HDPE films, while there was slight stretching in the hydroxyl (-OH) regions of carboxylic acid in PVC which is evidenced through Fourier transform infrared spectral studies, suggested the oxidative activities of the bacteria. Though, the bacterial activity was higher on the LDPE and HDPE than PVC film which may be due to the presence of chlorine atom in PVC structure making it more versatile. The results of the present study revealed the ability of marine bacterial strain for instigating their colonization over plastic films and deteriorating the polymeric structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app