Add like
Add dislike
Add to saved papers

Combining MRF-based deformable registration and deep binary 3D-CNN descriptors for large lung motion estimation in COPD patients.

PURPOSE: Deep convolutional neural networks in their various forms are currently achieving or outperforming state-of-the-art results on several medical imaging tasks. We aim to make these developments available to the so far unsolved task of accurate correspondence finding-especially with regard to image registration.

METHODS: We propose a two-step hybrid approach to make deep learned features accessible to a discrete optimization-based registration method. In a first step, in order to extract expressive binary local descriptors, we train a deep network architecture on a patch-based landmark retrieval problem as auxiliary task. As second step at runtime within a MRF-regularised dense displacement sampling, their binary nature enables highly efficient similarity computations, thus making them an ideal candidate to replace the so far used handcrafted local feature descriptors during the registration process.

RESULTS: We evaluate our approach on finding correspondences between highly non-rigidly deformed lung CT scans from different breathing states. Although the CNN-based descriptors excell at an auxiliary learning task for finding keypoint correspondences, self-similarity-based descriptors yield more accurate registration results. However, a combination of both approaches turns out to generate the most robust features for registration.

CONCLUSION: We present a three-dimensional framework for large lung motion estimation based on the combination of CNN-based and handcrafted descriptors efficiently employed in a discrete registration method. Achieving best results by combining learned and handcrafted features encourages further research in this direction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app