Add like
Add dislike
Add to saved papers

Synthesis, characterization, crystal structure of novel bis-thiomethylcyclohexanone derivatives and their inhibitory properties against some metabolic enzymes.

Bioorganic Chemistry 2018 November 4
In this study, a series of novel bis-thiomethylcyclohexanone compounds (3a-3j) were synthesized by the addition of thio-Michael to the bis-chalcones under mild reaction conditions. The bis-thiomethylcyclohexanone derivatives (bis-sulfides) were characterized by 1 H NMR, 13 C NMR, FTIR and elemental analysis techniques. Furthermore, the molecular and crystal structures of 3h, 3i and 3j compounds were determined by single crystal X-ray diffraction studies. In this study, X-ray crystallography provided an alternative and often-complementary means for elucidating functional groups at the enzyme inhibitory site. Acetylcholinesterase (AChE) is a member of the hydrolase protein super family and has a significant role in acetylcholine-mediated neurotransmission. Here, we report the synthesis and determining of novel bis-thiomethylcyclohexanone compounds based hybrid scaffold of AChE inhibitors. The newly synthesized bis-thiomethylcyclohexanone compounds showed Ki values of in range of 39.14-183.23 nM against human carbonic anhydrase I isoenzyme (hCA I), 46.03-194.02 nM against human carbonic anhydrase II isoenzyme (hCA II), 4.55-32.64 nM against AChE and 12.77-37.38 nM against butyrylcholinesterase (BChE). As a result, novel bis-thiomethylcyclohexanone compounds can have promising anti Alzheimer drug potential and record novel hCA I, and hCA II enzymes inhibitor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app