Journal Article
Review
Add like
Add dislike
Add to saved papers

Gas exchange and water-use efficiency in plant canopies.

Plant Biology 2018 November 15
In this review, I first address the basics of gas exchange, water-use efficiency, and carbon isotope discrimination in C3 plant canopies. I then present a case study of water-use efficiency in northern Australian tree species. In general, C3 plants face a trade-off whereby increasing stomatal conductance for a given set of conditions will result in a higher CO2 assimilation rate, but a lower photosynthetic water-use efficiency. A common garden experiment suggested that tree species which are able to establish and grow in drier parts of northern Australia have a capacity to use water rapidly when it is available through high stomatal conductance, but that they do so at the expense of low water-use efficiency. This may explain why community level carbon isotope discrimination does not decrease as steeply with decreasing rainfall on the North Australian Tropical Transect as has been observed on some other precipitation gradients. Next, I discuss changes in water-use efficiency that take place during leaf expansion in C3 plant leaves. Leaf phenology has recently been recognized as a significant driver of canopy gas exchange in evergreen forest canopies, and leaf expansion involves changes in both photosynthetic capacity and water-use efficiency. Following this, I discuss the role of woody tissue respiration in canopy gas exchange and how photosynthetic refixation of respired CO2 can increase whole-plant water-use efficiency. Finally, I discuss the role of water-use efficiency in driving terrestrial plant responses to global change, especially the rising concentration of atmospheric CO2 . In coming decades, increases in plant water-use efficiency caused by rising CO2 are likely to partially mitigate impacts on plants of drought stress caused by global warming. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app