Add like
Add dislike
Add to saved papers

SCFβ-TrCP ubiquitinates CHK1 in an AMPK-dependent manner in response to glucose deprivation.

Molecular Oncology 2018 November 15
The ATR/CHK1 pathway is a key effector of cellular response to DNA damage and therefore is a critical regulator of genomic stability. While the ATR/CHK1 pathway is often inactivated by mutations, CHK1 itself is rarely mutated in human cancers. Thus, cellular levels of CHK1 likely play a key role in the maintenance of genomic stability and preventing tumorigenesis. Glucose deprivation is observed in many solid tumors due to high glycolytic rates of cancer cells and insufficient vascularization, yet cancer cells have devised mechanisms to survive in conditions of low glucose. Although CHK1 degradation through the ubiquitin-proteasome pathway following glucose deprivation has been previously reported, the detailed molecular mechanisms remain elusive. Here we show that CHK1 is ubiquitinated and degraded upon glucose deprivation by the Skp1-Cullin-F-box (β-TrCP) E3 ubiquitin ligase. Specifically, CHK1 contains a β-TrCP recognizable degron domain, which is phosphorylated by AMPK in response to glucose deprivation, allowing for β-TrCP to recognize CHK1 for subsequent ubiquitination and degradation. Our results provide a novel mechanism by which glucose metabolism regulates a DNA damage effector, and imply that glucose deprivation, which is often found in solid tumor microenvironments, may enhance mutagenesis, clonal expansion, and tumor progression by triggering CHK1 degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app