Add like
Add dislike
Add to saved papers

Erythrocyte-Inspired Discoidal Polymeric Nanoconstructs Carrying Tissue Plasminogen Activator for the Enhanced Lysis of Blood Clots.

ACS Nano 2018 November 17
Tissue plasminogen activator (tPA) is the sole approved therapeutic molecule for the treatment of acute ischemic stroke. Yet, only a small percentage of patients could benefit from this life-saving treatment because of medical contraindications and severe side effects, including brain hemorrhage, associated with delayed administration. Here, a nano therapeutic agent is realized by directly associating the clinical formulation of tPA to the porous structure of soft discoidal polymeric nanoconstructs (tPA-DPNs). The porous matrix of DPNs protects tPA from rapid degradation, allowing tPA-DPNs to preserve over 70% of the tPA original activity after 3 h of exposure to serum proteins. Under dynamic conditions, tPA-DPNs dissolve clots more efficiently than free tPA, as demonstrated in a microfluidic chip where clots are formed mimicking in vivo conditions. At 60 min post-treatment initiation, the clot area reduces by half (57 ± 8%) with tPA-DPNs, whereas a similar result (56 ± 21%) is obtained only after 90 min for free tPA. In murine mesentery venules, the intravenous administration of 2.5 mg/kg of tPA-DPNs resolves almost 90% of the blood clots, whereas a similar dose of free tPA successfully recanalizes only about 40% of the treated vessels. At about 1/10 of the clinical dose (1.0 mg/kg), tPA-DPNs still effectively dissolve 70% of the clots, whereas free tPA works efficiently only on 16% of the vessels. In vivo, discoidal tPA-DPNs outperform the lytic activity of 200 nm spherical tPA-coated nanoconstructs in terms of both percentage of successful recanalization events and clot area reduction. The conjugation of tPA with preserved lytic activity, the deformability and blood circulating time of DPNs together with the faster blood clot dissolution would make tPA-DPNs a promising nanotool for enhancing both potency and safety of thrombolytic therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app